Imagen de OpenLibrary

Theory of linear and integer programming / Alexander Schrijver.

Por: Idioma: Inglés Series Wiley Interscience Series in Discrete Mathematics and OptimizationChichester ; New York : John Wiley & Sons , 1998Descripción: xi, 471 páginasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
ISBN:
  • 0471982326
Tema(s): Clasificación CDD:
  • 519.72 S379t 1998
Recursos en línea:
Contenidos:
1. Introduction and preliminaries. -- 2. Problems, algotithms, and complexity. -- 3. Linear algebra and complexity. -- 4. Theory of lattices and linear diophantine equations. -- 5. Algorithms for linear diophantine equations. -- 6. Diophantine approximation and basis reduction. -- 7. Fundamental concepts and results on polyhedra, linear inequalities and linear programming. -- 8. The structure of polyhedra. -- 9. Polarity, and blocking and anti-blocking polyhedra. -- 10. Sizes and the theoretical complexity of linear inequalities and linear programming. -- 11. The simplex method. -- 12. Primal-dual, elimination, and relaxation methods. -- Khachiyan's method for linear programming. -- 14. The ellipsoid method for polyhedra more generally. -- 15. Further polynomiality results in linear programming. -- 16. Introduction to integer linear programming. -- 17. Estimates in integer linear programming. -- 18. The complexity of integer linear programming. -- 19. Totally unimodular matrices: fundamental properties and examples. -- 20. Recognizing total unimodularity. -- 21. Further theory related to total unimoularity. -- 22. Integral polyhedra and total dual integrality. -- 23. Cutting planes. -- 24. Further methods in integer linear programming.
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Biblioteca Central Estantería General 519.72 S379t 1998 (Navegar estantería(Abre debajo)) c.1 Disponible 35605001863505

A Wiley-Interscience Publication

Incluye contenido, índices.

Referencias bibliográficas

1. Introduction and preliminaries. -- 2. Problems, algotithms, and complexity. -- 3. Linear algebra and complexity. -- 4. Theory of lattices and linear diophantine equations. -- 5. Algorithms for linear diophantine equations. -- 6. Diophantine approximation and basis reduction. -- 7. Fundamental concepts and results on polyhedra, linear inequalities and linear programming. -- 8. The structure of polyhedra. -- 9. Polarity, and blocking and anti-blocking polyhedra. -- 10. Sizes and the theoretical complexity of linear inequalities and linear programming. -- 11. The simplex method. -- 12. Primal-dual, elimination, and relaxation methods. -- Khachiyan's method for linear programming. -- 14. The ellipsoid method for polyhedra more generally. -- 15. Further polynomiality results in linear programming. -- 16. Introduction to integer linear programming. -- 17. Estimates in integer linear programming. -- 18. The complexity of integer linear programming. -- 19. Totally unimodular matrices: fundamental properties and examples. -- 20. Recognizing total unimodularity. -- 21. Further theory related to total unimoularity. -- 22. Integral polyhedra and total dual integrality. -- 23. Cutting planes. -- 24. Further methods in integer linear programming.