Imagen de cubierta local
Imagen de cubierta local
Imagen de OpenLibrary

The geometry of physics : an introduction / Theodore Frankel.

Por: Idioma: Inglés Cambridge : Cambridge University Press , 1997Edición: First editionDescripción: xxii, 654 páginasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
ISBN:
  • 0521387531
Tema(s): Clasificación CDD:
  • 530.15636  F829gm 1997
Contenidos:
I. Manifolds, tensors, and exterior forms. - 1. Manifolds and vector fields. - 2. Tensors and exterior forms. - 3. Integration of differential forms. - 4. The Lie derivate. - 5. The poincaré lemma and potentials. - 6. Holonomic and nonholonomic constraints.
II. Geometry and topology. 7. R3 and minkowski space. - 8. The geometry of surfaces in R3. - 9. Covariant differentiation and curvature. - 10. Geodesics. - 11. Relativity, tensors, and curvature. - 12. Curvature and topology: Synge's theorem. - 13. Betti numbers and De Rham's theorem. - 14. Harmonic forms. -
III. Lie groups, bundles, and chern forms. 15. Lie groups. - 16. Vector bundles in geometry and physics. - 17. Fiber bundles, Gauss-Bonnet, and topological quantization. - 18. Connections and associated bundles. - 19. The dirac equation. - 20. Yang-Mills fields. - 21. Betti Numbers and covering spaces. - 22. Chern forms and homotopy groups.
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Biblioteca Central Estantería General 530.15636 F829gm 1997 (Navegar estantería(Abre debajo)) c.1 Disponible 015292

Incluye tabla de contenido.

Bibliografía: páginas 639-641.

I. Manifolds, tensors, and exterior forms. - 1. Manifolds and vector fields. - 2. Tensors and exterior forms. - 3. Integration of differential forms. - 4. The Lie derivate. - 5. The poincaré lemma and potentials. - 6. Holonomic and nonholonomic constraints.

II. Geometry and topology. 7. R3 and minkowski space. - 8. The geometry of surfaces in R3. - 9. Covariant differentiation and curvature. - 10. Geodesics. - 11. Relativity, tensors, and curvature. - 12. Curvature and topology: Synge's theorem. - 13. Betti numbers and De Rham's theorem. - 14. Harmonic forms. -

III. Lie groups, bundles, and chern forms. 15. Lie groups. - 16. Vector bundles in geometry and physics. - 17. Fiber bundles, Gauss-Bonnet, and topological quantization. - 18. Connections and associated bundles. - 19. The dirac equation. - 20. Yang-Mills fields. - 21. Betti Numbers and covering spaces. - 22. Chern forms and homotopy groups.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local