Imagen de OpenLibrary

Classical mechanics / H. C. Corben, Philip Stehle.

Por: Colaborador(es): Idioma: Inglés Series Dover Classic of Science and MathematicsNew York : Dover Publications , 1994Edición: 2nd editionDescripción: xi, 389 páginas : figurasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
ISBN:
  • 0486680630
Tema(s): Clasificación CDD:
  • 531 C789c 1994
Contenidos:
Chapter 1. Kinematics of particles.
Chapter 2. The laws of motion.
Chapter 3. Conservative systems with one degree of freedom.
Chapter 4. Two-particle.
Chapter 5. Time-dependent forces and nonconservative motion.
Chapter 6. Lagrange's equations of motion. -
Chapter 7. Applications of Lagrange's equations.
Chapter 8. Small oscillations.
Chapter 9. Rigid bodies.
Chapter 10. Hamiltonian theory.
Chapter 11. The Hamilton-Jacobi method.
Chapter 12. Infinitesimal contact transformations.
Chapter 13. Further development of transformation theory.
Chapter 14. Special applications.
Chapter 15. continuous media and fields.
Chapter 16. Introduction to special relativity theory.
Chapter 17. The orbits of particles in high energy accelerators.
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Biblioteca Central Estantería General 531 C789c 1994 (Navegar estantería(Abre debajo)) c.1 Disponible 015554

Incluye índice.

Chapter 1. Kinematics of particles.

Chapter 2. The laws of motion.

Chapter 3. Conservative systems with one degree of freedom.

Chapter 4. Two-particle.

Chapter 5. Time-dependent forces and nonconservative motion.

Chapter 6. Lagrange's equations of motion. -

Chapter 7. Applications of Lagrange's equations.

Chapter 8. Small oscillations.

Chapter 9. Rigid bodies.

Chapter 10. Hamiltonian theory.

Chapter 11. The Hamilton-Jacobi method.

Chapter 12. Infinitesimal contact transformations.

Chapter 13. Further development of transformation theory.

Chapter 14. Special applications.

Chapter 15. continuous media and fields.

Chapter 16. Introduction to special relativity theory.

Chapter 17. The orbits of particles in high energy accelerators.