Introduction to numerical linear algebra and optimisation / Philippe G. Ciarlet ; with assistance of Bernardette Miara and Jean Marie Thomas for the exercises ; translated by A. Buttigieg
Idioma: Inglés Series Cambridge texts in applied mathematicsCambridge : Cambridge University , 1989Descripción: xiv, 436 páginasTipo de contenido:- text
- unmediated
- volume
- 0521339847
- 512.5 C566i 1989
Contenidos:
1. A summary of results on matrices. -- 2. General results in the numerical analysis of matrices. -- 3. Sources of problems in the numerical analysis of matrices. -- 4. Direct methods for the solution of linear systems. -- 5. Iterative methods for the solution of linear systems. -- 6. Methods for the calculation of eigenvalues and eigenvectors. -- 7. A review of differential calculus. Some applications. -- 8. General results on optimisation. Some algorithms. -- 9. Introduction to non-linear programming. -- 10. Linear programming.
Tipo de ítem | Biblioteca actual | Colección | Signatura topográfica | Copia número | Estado | Fecha de vencimiento | Código de barras | |
---|---|---|---|---|---|---|---|---|
Libros | Biblioteca Central Estantería | General | 512.5 C566i 1989 (Navegar estantería(Abre debajo)) | c.1 | Disponible | 35605002030869 | ||
Libros | Biblioteca Central Estantería | General | 512.5 C566i 1989 (Navegar estantería(Abre debajo)) | c.2 | Disponible | 35605002030845 | ||
Libros | Biblioteca Central Estantería | General | 512.5 C566i 1989 (Navegar estantería(Abre debajo)) | c.3 | Disponible | 35605002030838 | ||
Libros | Biblioteca Central Estantería | General | 512.5 C566i 1989 (Navegar estantería(Abre debajo)) | c.4 | Disponible | 35605002030821 |
Incluye contenido e índice
Bibliografía
1. A summary of results on matrices. -- 2. General results in the numerical analysis of matrices. -- 3. Sources of problems in the numerical analysis of matrices. -- 4. Direct methods for the solution of linear systems. -- 5. Iterative methods for the solution of linear systems. -- 6. Methods for the calculation of eigenvalues and eigenvectors. -- 7. A review of differential calculus. Some applications. -- 8. General results on optimisation. Some algorithms. -- 9. Introduction to non-linear programming. -- 10. Linear programming.