Imagen de OpenLibrary

A first course in real analysis / M. H. Protter, C. B. Morrey.

Por: Colaborador(es): Idioma: Inglés Series Undergraduate Texts in MathematicsNew York : Springer-Verlag , 1991Edición: 2nd editionDescripción: xviii, 534 páginas : figurasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
ISBN:
  • 0387974377
Tema(s): Clasificación CDD:
  • 515 P967f 1991
Contenidos:
CHAPTER 1. The real number system.
CHAPTER 2. Continuity and limits.
CHAPTER 3. Basic properties of functions on R1.
CHAPTER 4. Elementary theory of differentiation.
CHAPTER 5. Elementary theory of integration.
CHAPTER 6. Elementary theory of metric spaces.
CHAPTER 7. Differentiation in Rn.
CHAPTER 8. Integration in Rn.
CHAPTER 9. Infinite sequences and infinite series.
CHAPTER 10. Fourier series.
CHAPTER 11. Functions defined by integrals; improper integrals.
CHAPTER 12. The Riemann-Stieltjes integral and functions of bounded variation.
CHAPTER 13. Contraction mappings, Newton's method, and differential equations.
CHAPTER 14. Implicit on metric spaces; approximation.
CHAPTER 15. Functions on metric spaces; Approximation.
CHAPTER 16. Vector field theory; the theorems of green and stokes.
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Biblioteca Central Estantería General 515 P967f 1991 (Navegar estantería(Abre debajo)) c.1 Prestado 03/03/2025 023083

Incluye índice.

CHAPTER 1. The real number system.

CHAPTER 2. Continuity and limits.

CHAPTER 3. Basic properties of functions on R1.

CHAPTER 4. Elementary theory of differentiation.

CHAPTER 5. Elementary theory of integration.

CHAPTER 6. Elementary theory of metric spaces.

CHAPTER 7. Differentiation in Rn.

CHAPTER 8. Integration in Rn.

CHAPTER 9. Infinite sequences and infinite series.

CHAPTER 10. Fourier series.

CHAPTER 11. Functions defined by integrals; improper integrals.

CHAPTER 12. The Riemann-Stieltjes integral and functions of bounded variation.

CHAPTER 13. Contraction mappings, Newton's method, and differential equations.

CHAPTER 14. Implicit on metric spaces; approximation.

CHAPTER 15. Functions on metric spaces; Approximation.

CHAPTER 16. Vector field theory; the theorems of green and stokes.