Imagen de OpenLibrary

Mathematics for physics : a guided tour for graduate students / Michael Stone and Paul Goldbart.

Por: Colaborador(es): Idioma: Inglés Cambridge : Cambridge University Press , 2009Edición: 1a ediciónDescripción: xiii, 806 páginas : figurasTipo de contenido:
  • text
Tipo de medio:
  • unmediated
Tipo de soporte:
  • volume
ISBN:
  • 9780521854030
Tema(s): Clasificación CDD:
  • 530.15 S877m 2009
Contenidos:
1. Calculus of variations. -
2. Function spaces. -
3. Linear ordinary differential equations. -
4. Linear differential operators. -
5. Green functions. -
6. Partial differential equations. -
7. The mathematics of real waves. -
8. Special functions. -
9. Integral equations. -
10. Vectors and tensors. -
11. Differential calculus on manifold. -
12. Integration on manifolds. -
13. An introduction to differential topology. -
14. Groups and group repreentations. -
15. Lie groups. -
16. The geometry of fibre bundles. -
17. Complex analysis. -
18. Applications of complex variables. -
19. Special functions and complex variables. -
A. Linear algebra review. -
B. Fourier series and integrals.
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Biblioteca Central Estantería General 530.15 S877m 2009 (Navegar estantería(Abre debajo)) c.1 Disponible 015406

Incluye índice.

Bibliografía : páginas 797-798

1. Calculus of variations. -

2. Function spaces. -

3. Linear ordinary differential equations. -

4. Linear differential operators. -

5. Green functions. -

6. Partial differential equations. -

7. The mathematics of real waves. -

8. Special functions. -

9. Integral equations. -

10. Vectors and tensors. -

11. Differential calculus on manifold. -

12. Integration on manifolds. -

13. An introduction to differential topology. -

14. Groups and group repreentations. -

15. Lie groups. -

16. The geometry of fibre bundles. -

17. Complex analysis. -

18. Applications of complex variables. -

19. Special functions and complex variables. -

A. Linear algebra review. -

B. Fourier series and integrals.